嵌入式系统的硬件除了核心的微处理器之外就是外围器件和接口。接口技术在嵌入式系统设计处于如此重要的位置,是嵌入式系统设计师硬件部分的重要考试范围。目前嵌入式系统中的接口五花百门,每个接口都可以写成一本厚厚的书。面对内容如此之多,范围如此之广的考试部分,应该怎么样去复习呢?我的指导思想是,把握好每种接口技术的最基本概念,理解透每个接口的最基本工作原理,从历年考题中提炼出常考知识点,重点进行复习,这样足以应付考试了。是不是这样就要通过真题考试来验证了,让我们期待吧。
(1)Flash存储器是一种非易失性存储器,根据结构的不同可以将其分为NOR Flash和NAND Flash两种。
(2)Flash存储器的特点:
(3)NOR Flash的特点:应用程序可以直接在闪存内运行,不需要再把代码读到系统RAM中运行。NOR Flash的传输效率很高,在1MB~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。
(4)NAND Flash的特点:能够提高极高的密度单元,可以达到高存储密度,并且写入和擦除的速度也很快,这也是为何所有的U盘都使用NAND Flash作为存储介质的原因。应用NAND Flash的困难在于闪存需要特殊的系统接口。
(5)NOR Flash与NAND Flash的区别:
(1)SRAM的特点:
SRAM表示静态随机存取存储器,只要供电它就会保持一个值,它没有刷新周期,由触发器构成基本单元,集成度低,每个SRAM存储单元由6个晶体管组成,因此其成本较高。它具有较高速率,常用于高速缓冲存储器。
通常SRAM有4种引脚:
(2)DRAM的特点:
DRAM表示动态随机存取存储器。这是一种以电荷形式进行存储的半导体存储器。它的每个存储单元由一个晶体管和一个电容器组成,数据存储在电容器中。电容器会由于漏电而导致电荷丢失,因而DRAM器件是不稳定的。它必须有规律地进行刷新,从而将数据保存在存储器中。
DRAM的接口比较复杂,通常有以下引脚:
(3)SDRAM的特点:
SDRAM表示同步动态随机存取存储器。同步是指内存工作需要同步时钟,内部的命令发送与数据的传输都以它为基准;动态是指存储器阵列需要不断的刷新来保证数据不丢失。它通常只能工作在133MHz的主频。
(4)DDRAM的特点
DDRAM表示双倍速率同步动态随机存取存储器,也称DDR。DDRAM是基于SDRAM技术的,SDRAM在一个时钟周期内只传输一次数据,它是在时钟的上升期进行数据传输;而DDR内存则是一个时钟周期内传输两次次数据,它能够在时钟的上升期和下降期各传输一次数据。在133MHz的主频下,DDR内存带宽可以达到133×64b/8×2=2.1GB/s。
GPIO是I/O的最基本形式,它是一组输入引脚或输出引脚。有些GPIO引脚能够加以编程改变工作方向,通常有两个控制寄存器:数据寄存器和数据方向寄存器。数据方向寄存器设置端口的方向。如果将引脚设置为输出,那么数据寄存器将控制着该引脚状态。若将引脚设置为输入,则此输入引脚的状态由引脚上的逻辑电路层来实现对它的控制。
(1)A/D转换器是把电模拟量转换为数字量的电路。实现A/D转换的方法有很多,常用的方法有计数法、双积分法和逐次逼进法。
(2)计数式A/D转换法
其电路主要部件包括:比较器、计数器、D/A转换器和标准电压源。
其工作原理简单来说就是,有一个计数器,从0开始进行加1计数,每进行一次加1,该数值作为D/A转换器的输入,其产生一个比较电压VO与输入模拟电压VIN进行比较。如果VO小于VIN则继续进行加1计数,直到VO大于VIN,这时计数器的累加数值就是A/D转换器的输出值。(详细参考《教程》155页)
这种转换方式的特点是简单,但是速度比较慢,特别是模拟电压较高时,转换速度更慢。例如对于一个8位A/D转换器,若输入模拟量为最大值,计数器要从0开始计数到255,做255次D/A转换和电压比较的工作,才能完成转换。
(3)双积分式A/D转换法
其电路主要部件包括:积分器、比较器、计数器和标准电压源。
其工作原理是,首先电路对输入待测电压进行固定时间的积分,然后换为标准电压进行固定斜率的反向积分,反向积分进行到一定时间,便返回起始值。由于使用固定斜率,对标准电压进行反向积分的时间正比于输入模拟电压值,输入模拟电压越大,反向积分回到起始值的时间越长。只要用标准的高频时钟脉冲测定反向积分花费的时间,就可以得到相应于输入模拟电压的数字量,也就完成了A/D转换。(详细参考《教程》156页)
其特点是,具有很强的抗工频干扰能力,转换精度高,但转换速度慢,通常转换频率小于10Hz,主要用于数字式测试仪表、温度测量等方面。
(4)逐次逼近式A/D转换法
其电路主要部件包括:比较器、D/A转换器、逐次逼近寄存器和基准电压源。
其工作原理是,实质上就是对分搜索法,和平时天平的使用原理一样。在进行A/D转换时,由D/A转换器从高位到低位逐位增加转换位数,产生不同的输出电压,把输入电压与输出电压进行比较而实现。首先使最高位为1,这相当于取出基准电压的1/2与输入电压比较,如果在输入电压小于1/2的基准电压,则最高位置0,反之置1。之后,次高位置1,相当于在1/2的范围中再作对分搜索,以此类推,逐次逼近。(详细参考《教程》157页)
其特点是,速度快,转换精度高,对N位A/D转换器只需要M个时钟脉冲即可完成,一般可用于测量几十到几百微秒的过渡过程的变化,是目前应用最普遍的转换方法。
(5)A/D转换的重要指标(有可能考一些简单的计算)
例如,满量程10V,10位A/D芯片,若其绝对精度为±1/2LSB,则其最小有效位LSB的量化单位为:10/1024=9.77mv,其绝对精度为9.77mv/2=4.88mv,相对精度为:0.048%。
(1)D/A转换器使将数字量转换为模拟量。
(2)在集成电路中,通常采用T型网络实现将数字量转换为模拟电流,再由运算放大器将模拟电路转换为模拟电压。进行D/A转换实际上需要上面的两个环节。关于T型电阻解码网络和D/A转换具体原理参考《教程》的159页。
(3)D/A转换器的分类:
(4)D/A转换器的主要指标:分辨率、建立时间、线性度、转换精度、温度系数。
(1)键盘的两种形式:线性键盘和矩阵键盘。
(2)识别键盘上的闭合键通常有两种方法:行扫描法和行反转法。(《教程》163页)
(3)行扫描法是矩阵键盘按键常用的识别方法,此方法分为两步进行:
(1)LCD的基本原理是,通过给不同的液晶单元供电,控制其光线的通过与否,从而达到显示的目的。
(2)LCD的光源提供方式有两种:投射式和反射式。笔记本电脑的LCD显示器为投射式,屏的背后有一个光源,因此外界环境可以不需要光源。一般微控制器上使用的LCD为反射式,需要外界提供电源,靠反射光来工作。电致发光(EL)是液晶屏提供光源的一种方式。
(3)按照液晶驱动方式分类,常见的LCD可以分为三类:扭转向列类(TN)、超扭曲向列型(STN)和薄膜晶体管型(TFT)。
(4)市面上出售的LCD有两种类型:带有驱动电路的LCD显示模块,只要总线方式驱动;没有驱动电路的LCD显示器,使用控制器扫描方式。
(5)通常,LCD控制器工作的时候,通过DMA请求总线,直接通过SDRAM控制器读取SDRAM中指定地址(显示缓冲区)的数据,此数据经过LCD控制器转换成液晶屏扫描数据格式,直接驱动液晶显示器。
(6)VGA接口本质上是一个模拟接口,一般都采用统一的15引脚接口,包括2个NC信号、3根显示器数据总线、5个GND信号、3个RGB色彩分量、1个行同步信号和1个场同步信号。其色彩分量采用的电平标准为EIA定义的RS343标准。
9、触摸屏接口
(1)按工作原理分,触摸屏可以分为:表面声波屏、电容屏、电阻屏和红外屏几种。(具体的工作原理看《教程》173页)
(2)触摸屏的控制采用专业芯片,例如ADS7843。(具体工作原理看《教程》176页)。
(1)基本原理:麦克风输入的数据经音频编解码器解码完成A/D转换,解码后的音频数据通过音频控制器送入DSP或CPU进行相应的处理,然后数据经音频控制器发送给音频编码器,经编码D/A转换后由扬声器输出。
(2)数字音频的格式有多种,最常用的是下面三种:
(3)IIS是音频数据的编码或解码常用的串行音频数字接口。IIS总线只处理声音数据,其他控制信号等则需要单独传输。IIS使用了3根串行总线:数据线SD、字段选择线WS、时钟信号线SCK。
(4)当接收方和发送方的数据字段宽度不一样时,发送方不考虑接收方的数据字段宽度。如果发送方发送的数据字段小于系统字段宽度,就在低位补0;如果发送方的数据宽度大于接收方的宽度,则超过LSB的部分被截断。字段选择WS用来选择左右声道,WS=0表示选择左声道;WS=1表示选择右声道。此外,WS能让接收设备存储前一个字节,并准备接收下一个字节。
(1)串行通信是指,使数据一位一位地进行传输而实现的通信。与并行通信相比,串行通信具有传输线少、成本低等优点,特别适合远距离传送;缺点使速度慢。
(2)串行数据传送有3种基本的通信模式:单工、半双工、全双工。
(3)串行通信在信息格式上可以分为2种方式:同步通信和异步通信。
(4)异步通信必须遵循3项规定:
a、奇校验:要使字符加上校验位有奇数个“1”。
b、偶检验:要使字符加上校验位有偶数个“1”。
(5)RS-232C的电气特性:负逻辑。
信号有效(ON状态)为3V~15V
信号无效(OFF状态)为-3V~-15V
(6)TTL标准与RS-232C标准之间的电平转换利用集成芯片RS232实现。(详见《教程》182页)
(7)RS-422串行通信接口
(8)RS-485串行总线接口
(1)并行接口的数据传输率比串行接口快8倍,标准并行接口的数据传输率为1Mb/s,一般用来连接打印机、扫描仪等,所以又称打印口。
(2)并行接口可以分为SPP(标准并口)、EPP(增强型并口)和ECP(扩展型并口)。
(3)并行总线分为标准和非标准两类。常用的并行标准总线有IEEE 488总线和ANSI SCSI总线。MXI总线是一种高性能非标准的通用多用户并行总线。
(1)PCI总线是地址、数据多路复用的高性能32位和64位总线,是微处理器与外围控制部件、外围附加板之间的互连机构。
(2)从数据宽度上看,PCI定义了32位数据总线,且可扩展为64位。从总线速度上分,有33MHz和66MHz两种。
(3)与ISA总线相比,PCI总线的地址总线与数据总线分时复用,支持即插即用、中断共享等功能。
(1)USB总线的主要特点:
(2)USB系统由3部分来描述:USB主机、USB设备和USB互连。
(3)USB总线支持的数据传输率有3种:高速信令位传输率为480Mb/s;全速信令位传输率为12Mb/s;全速信令位传输率为1.5Mb/s。
(4)USB总线电缆有4根线:一对双绞信号线和一对电源线。
(5)USB是一种查询总线,由主控制器启动所有的数据传输。USB上所挂接的外设通过由主机调度的、基于令牌的协议来共享USB带宽。
(6)大部分总线事务涉及3个包的传输:
(7)主机与设备端点之间的USB数据传输模型被称作管道。管道有两种类型:流和消息。消息数据具有USB定义的结构,而数据流没有。
(8)事务调度表允许对某些流管道进行流量控制,在硬件级,通过使用NAK(否认)握手信号来调节数据传输率,以防止缓冲区上溢或下溢产生。
(9)USB设备最大的特点是即插即用。
(10)工作原理:USB设备插入USB端点时,主机都通过默认地址0与设备的端点0进行通信。在这个过程中,主机发出一系列试图得到描述符的标准请求,通过这些请求,主机得到所有感兴趣的设备信息,从而知道了设备的情况以及该如何与设备通信。随后主机通过发出Set Address请求为设备设置一个唯一的地址。以后主机就通过为设备设置好的地址与设备通信,而不再使用默认地址0。
(1)SPI是一个同步协议接口,所有的传输都参照一个共同的时钟,这个同步时钟有主机产生,接收数据的外设使用时钟来对串行比特流的接收进行同步化。
(2)在多个设备连接到主机的同一个SPI接口时,主机通过从设备的片选引脚来选择。
(3)SPI主要使用4个信号:主机输出/从机输入(MOSI),主机输入/从机输出(MISO)、串行时钟SCLK和外设片选CS。
(4)主机和外设都包含一个串行移位寄存器,主机通过向它的SPI串行寄存器写入一个字节来发起一次数据传输。寄存器通过MOSI信号线将字节传送给外设,外设也将自己移位寄存器中的内容通过MISO信号线返回给主机,这样,两个移位寄存器中的内容就被交换了。
(5)外设的写操作和读操作时同步完成的,因此SPI成为一个很有效的协议。
(6)如果只是进行写操作,主机只需忽略收到的字节;反过来,如果主机要读取外设的一个字节,就必须发送一个空字节来引发从机的传输。
16、IIC接口
(1)IIC总线是具备总线仲裁和高低速设备同步等功能的高性能多主机总线。
(2)IIC总线上需要两条线:串行数据线SDA和串行时钟线SCL。
(3)总线上的每个器件都有唯一的地址以供识别,而且各器件都可以作为一个发送器或者接收器(由器件的功能决定)。
(4)IIC总线有4种操作模式:主发送、主接收、从发送、从接收。
(5)IIC在传送数据过程中共有3种类型信号:
(6)主器件发送一个开始信号后,它还会立即送出一个从地址,来通知将与它进行数据通信的从器件。1个字节的地址包括7位地址信息和1位传输方向指示位,如果第7位为0,表示要进行一个写操作,如果为1,表示要进行一个读操作。
(7)SDA线上传输的每个字节长度都是8位,每次传输种字节的数量没有限制的。在开始信号后面的第一个字节是地址域,之后每个传输字节后面都有一个应答位(ACK),传输中串行数据的MSB(字节高位)首先发送。
(8)如果数据接收方无法再接收更多的数据,它可以通过将SCL保持低电平来中断传输,这样可以迫使数据发送方等待,直到SCL被重新释放。这样可以达到高低速设备同步。
(9)IIC总线的工作过程:SDA和SCL都是双向的。空闲的时候,SDA和SCL都是高电平,只有SDA变为低电平,接着SCL再变为低电平,IIC总线的数据传输才开始。SDA线上被传输的每一位在SCL的上升沿被采样,该位必须一直保持有效到SCL再次变为低电平,然后SDA就在SCL再次变为高电平之前传输下一个位。最后,SCL变回高电平,接着SDA也变为高电平,表示数据传输结束。
(1)最常用的以太网协议是IEEE802.3标准。
(2)传输编码(06和07年都有考题):曼彻斯特编码和差分曼彻斯特编码。
(3)相比之下,曼彻斯特编码编码简单,差分曼彻斯特编码提供更好的噪声抑制性能。
(4)以太网数据传输特点:
(5)嵌入式以太网接口有两种实现方法:
(6)TCP/IP是一个分层协议,分为:物理层、数据链路层、网络层、传输层和应用层。每层实现一个明确的功能,对应一个或几个传输协议,每层相对于它的下层都作为一个独立的数据包来实现。每层上的协议如下:
(7)ARP(地址解析协议)
(8)ICMP(网络控制报文协议)
(9)IP(网际协议)
a、不可靠:它不能保证数据包能成功到达目的地,任何要求的可靠性必须由上层来提供(如TCP)。如果发生某种错误,IP有一个简单的错误处理算法--丢弃该数据包,然后发送ICMP消息报给信源端。
b、无连接:IP不维护任何关于后续数据包的状态信息。每个数据包的处理都是相互独立的。IP数据包可以不按顺序接收,
(10)TCP(传输控制协议)
TCP协议是一个面向连接的可靠的传输层协议,它为两台主机提供高可靠性的端到端数据通信。
(11)UDP(用户数据包协议)
UDP协议是一种无连接不可靠的传输层协议,它不保证数据包能到达目的地,可靠性有应用层来提供。UDP协议开销少,和TCP相比更适合于应用在低端的嵌入式领域中。
(12)端口:TCP和UDP采用16位端口号来识别上层的用户,即应用层协议,例如FTP服务的TCP端口号都是21,Telnet服务的TCP端口号都是23,TFTP服务的UDP端口号都是69。
(1)CAN(Control Area Network,控制器局域网)总线是一种多主方式的串行通信总线,是国际上应用最广泛的现场总线之一,最初被用于汽车环境中的电子控制网络。一个CAN总线构成的单一网络中,理想情况下可以挂接任意多个节点,实际应用中节点数据受网络硬件的电气特性所限制。
(2)总线信号使用差分电压传送。两条信号线被称为CAN_H和CAN_L,静态是均为2.5V左右,此时状态表示逻辑1,也可以叫做“隐性”。用CAN_H比CAN_L高表示逻辑0,称为“显性”,此时,通常电压值为CAN_H=3.5V和CAN_L=1.5V。
(3)当“显性”和“隐性”位同时发送的时候,最后总线数值将为“显性”这种特性为CAN总线的仲裁奠定了基础。
(4)CAN总线的一个位时间可以分成4个部分:同步段、传播时间段、相位缓冲段1和相位缓冲段2。(详见《教程》205页)
(5)CAN总线的数据帧有两种格式:标准格式和扩展格式。包括:帧起始、仲裁场、控制场、数据场、CRC场、ACK场和帧结束。
(6)CAN总线硬件接口包括:CAN总线控制器和CAN收发器。CAN控制器主要完成时序逻辑转换等工作,例如菲利普的SJA1000。CAN收发器是CAN总线的物理层芯片,实现TTL电平到CAN总线电平特性的转换,例如TJA1050。
19、xDSL接口
(1)xDSL(数字用户线路)技术是,在现有用户电话线两侧同时接入专用的DSL调制解调设备,在用户线上利用数字数字信号高频带宽较宽的特性直接采用数字信号传输,省去中间的A/D转换,突破了模拟信号传输极限速率为56KB/s的闲置。
(2)DSL技术主要分为对称和非对称两大类。
(3)对成xDSL更适合于企业点对点连接应用,例如文件传输、视频会议等收发数据量大致相同的工作。
(4)ASDL是近年发展的另一种宽带接入技术,是利用双绞铜线向用户提供两个方向上速率不对称的宽带信息业务。
(5)ADSL在一对电话线上同时传送一路高速下行数据、一路较低速率上行数据、一路模拟电话。各信号之间采用频分复用方式占用不同频带,低频段传送话音;中间窄频带传送上行信道数据及控制信息;其余高频段传送下行信道数据、图像或高速数据。
(1)WLAN(Wireless Local Area Network)是利用无线通信技术在一定的局部范围内建立的,是计算机网络与无线通信技术相结合的产物,它以无线多址通道作为传输媒介,提供有线局域网的功能。
(2)WLAN的标准:主要是针对物理层和媒质访问控制层(MAC层),涉及到所有使用的无线频率范围、控制接口通信协议等技术规范与技术标准。
(3)WLAN有两种网络类型:对等网络和基础机构网络。
(1)蓝牙技术的目的:使特定的移动电话、便鞋式电脑以及各种便携通信设备的主机之间近距离内实现无缝的资源共享。
(2)蓝牙技术的实质内容是要建立通用的无线空中接口及其控制软件的公开标准。其工作频段为全球通用的2.4GHz ISM(即工业、科学、医学)频段,其数据传输速率为1Mb/s,采用时分双工方案来实现全双工传输,其理想的连接范围为10cm~10m。
(3)蓝牙基带协议是电路交换和分组交换的结合。
(4)蓝牙技术特点:
(5)蓝牙接口由3大单元组成:无线单元、基带单元、链路管理与控制单元。
(1)1394作为一种标准总线,可以在不同的工业设备之间架起一座沟通的桥梁,在一条总线上可以接入63个设备。
(2)IEEE 1394的特点:
(3)IEEE 1394的协议栈由3层组成:物理层、链路层和事务层,例外还有一个管理层。物理层和链路层由硬件构成,而事务层主要由软件实现。
23、电源接口
(1)DC-DC转换器有三种类型:
(2)任何变压器的转换过程都不具有100%的效率,稳压器本省也使用电流(静态电流),这个电流来自输入电流。静态电流越大,稳压器功耗越大。
(3)线性稳压器输入输出使用退耦电容来过滤,电容除了有助于平稳电压以外,还有利于去除电源中的瞬间短时脉冲波形干扰。
(4)电压与功耗之间的平方关系意味着理想高效的方法是在要求较低电压的较低时钟速率上执行代码,而不是先以最高的时钟速率执行代码然后再转为空闲休眠。
(5)电源通常被认为是整个系统的“心脏”,绝大多数电子设备50%~80%的节能潜力在于电源系统,研制开发新型开关电源是节能的主要举措之一。
(6)降低功耗的设计技术:
a、大多数数字电路的输出端在输出低电平时,其功耗远远大于输出高电平时的功耗,设计时应该注意控制低电平的输出时间,闲置时使其处于高电平输出状态。
b、多余的非门、与非门的输入端应接低电平,多余的与门、或门的输入端应接高电平。
c、ROM或RAM及其他有片选信号的器件,不要将“片选”引脚直接接地,避免器件长期被接通,而应该与“读/写”信号结合,只对其进行读写操作时才选通。
F、实现电源管理,设计外部器件电源控制电路,控制“耗电大户”的供电情况。
下图为01001110的各种编码方式,不归零电平(NRZ-L)采用0表示高电平,1表示低电平。若按照从上到下的顺序,所采用的编码方式分别为 (25) 。
(25)A. 不归零电平,曼彻斯特编码,差分曼彻斯特编码,不归零1制
B. 不归零电平,不归零1制,曼彻斯特编码,差分曼彻斯特编码
C. 曼彻斯特编码,不归零电平,不归零1制,差分曼彻斯特编码
D. 不归零1制,不归零电平,差分曼彻斯特编码,曼彻斯特编码
<答案>:B
考查计算机系统硬件编码方面的基础知识。
不归零电平:0=高电平;1=低电平。
不归零1制:0=在间隔的其实位置没有跳变;1=在间隔的其实位置有跳变。
曼彻斯特编码:
0=在间隔的中间位置从高向低跳变。
1=在间隔的中间位置从低向高跳变。
差分曼彻斯特编码:在间隔的中间位置总有一个跳变。
0=在间隔的起始位置有跳变。
1=在间隔的起始位置没有跳变。
下面关于DMA方式的描述,不正确的是 (28) 。
(28)A. DMA方式使外设接口可直接与内存进行高速的数据传输
B. DMA方式在外设与内存进行数据传输时不需要CPU干预
C. 采用DMA方式进行数据传输时,首先需要进行现场保护
D. DMA方式执行I/O交换要有专门的硬件电路
<答案>:C
考查计算机系统硬件方面关于DMA方式的基础知识。尽管《教程》中没有详细的提及,但是作为嵌入式最基本的知识点,是应该掌握的。
DMA是“直接存储器访问”,以这种方式传送数据时,是通过专门的硬件电路-DMA控制器直接访问存储器来完成,不需要CPU的干预,省去了保护和恢复现场的问题。
下列关于D/A变换器接口的描述,不正确的是 (32) 。
(32)A. 它是嵌入式微机系统与外部模拟控制对象的重要控制接口
B. 它通常由模拟开关、权电阻电路、缓冲电路组成
C. 它也可以把外界的模拟量变换成数字量
D. 它输出的模拟量可以是电流,也可以是电压
<答案>:C
考查嵌入式系统中D/A接口的基础知识。
D/A转换器是将数据信号转化为模拟信号的接口,是嵌入式系统与外部模拟控制对象的重要控制接口,其通常由模拟开关、权电阻电路和缓冲电路组成,根据不同的情况,输出的模拟量可以是电流,也可以是电压。
RS-232C串行通信总线的电气特性要求总线信号采用 (33) 。
(33)A. 正逻辑B. 负逻辑C. 高电平D. 低电平
<答案>:B
考查嵌入式系统中串行接口的基本知识。我觉得这是常识性的问题。
RS-232标准在初期可以满足人们的要求,但当人们要求以更高的速率传送到更远的距离时,需要有新的标准。RS-449就是为此目的而设计的,它的标准规格中,RS-422标准是平衡式的,传输一个信号用两根线,逻辑信号用(33)表示,双线传输的主要优点是(34)
(33)A. 正负5V以上电平B. 正负3V以上电平
C. 两线的电平差D. 两线的电平
(34)A. 冗余可靠B. 抗干扰能力强
C. 传输线少D. 可并行传输信号
<答案>:C、B
考查RS-422串行通信接口的基本知识。
RS-422标准的数据信号采用差分传输方式(即逻辑信号用两条线的电平差表示),使用一对双绞线进行信号传输。其主要优点是增强了信号的抗干扰能力。
6、2006年35题
若曼彻斯特编码和差分曼彻斯特编码的波形如图所示,则实际传送的比特串为(35)
(35)A. 011010110B. 100101100
C. 100100100D. 011010011
<答案>:D
考查计算机系统硬件编码方面的基础知识。
详解见(1)2007年25题。
下面关于PCI总线的叙述,其中(36)是错误的。
(36)A. PCI总线支持64位总线。
B. PCI总线的地址总线与数据总线是分时复用的。
C. PCI总线是一种独立设计的总线,它的性能不受CPU类型的影响。
D. PC机中不能同时使用PCI总线和ISA总线。
<答案>:D
考查嵌入式系统中PCI接口的基本知识。
详见见复习笔记13。在普通PC中允许同时使用PCI总线和ISA总线,这也是常识。
IEEE802.11b标准定义了使用跳频、扩频技术的无线局域网标准,传输速率为1Mb/s,2Mb/s,5.5Mb/s和(37)
(37)A. 10Mb/sB. 11Mb/sC. 20 Mb/sD. 54 Mb/s
<答案>:B
考查WLAN中常用标准的基本知识。
详解见复习笔记
从考试要求和复习范围来看,内容很多,无从下手。但是从历年真题来看,考查内容不多,06年5题,07年4题。考查的内容都是最基本的概念和特性。如果稍有复习到,基本不需要任何思考都可以做答,有些甚至是常识性问题,只要是电子类的学生或工程师都应该知道。所以说,对于这一部分无需害怕,把握好基本概念,理解好基本原理就没什么大问题的了。
祝各位好运,下次再见!